Computer Networks, Fall 2010
Instructor: Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw 
Lecture hours: 9AM-12NN Wednesdays at EC026
Course homepage: http://speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn.html
Course Objectives:


This graduate-level course is a part of a book project “Computer Networks, An Open Source Approach” to be published by McGraw Hills in Feb 2011. The book project is motivated by an observation that none of the existing textbooks on computer networks really demonstrate where and how network protocols and algorithms are implemented in real systems. This course covers why and how various protocols and algorithms are designed (domain knowledge) and implemented (hands-on skills) into Linux kernel, drivers, and various daemons. In short, physical and data link layers are embedded into network adaptors and their drivers, while IP and TCP/UDP layers are built into kernel; and various application servers stand as daemons. 


The loading for students includes (1) 8 homework sets for the 8 chapters (hand-writing and hands-on), and (2) midterm and final exams. Course materials for each chapter (slides and book materials) are downloadable from the course homepage. Feedbacks (error reporting or suggestions) to the book materials are much welcome. Class lectures are in English.
Textbook: Computer Networks: An Open Source Approach, Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, published by McGraw Hill, Feb 2011. Draft book materials at http://speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn.html 
References:
1. Larry L. Peterson and Bruce S. Davie, Computer Networks, A Systems Approach, 4th edition, Elsevier, 2007.
2. 林盈達, 計算機網路實驗, 交大出版社, 2007年9月.
Grading: Homework (x8) 40%, Midterm 30%, Final 30%.
Course Outline:
1    Fundamentals (63 pages, 24.2K words)
1.1 Requirements of Networking
1.1.1 Connectivity: Node, Link, Path

Sidebar – Historical Evolution: Standard Links
Sidebar – Historical Evolution: ATM Faded
1.1.2 Scalability: Number of Nodes 

1.1.3 Resource Sharing 

Sidebar – Principle in Action: Datacom vs. Telecom 

1.2 Underlying Principles

1.2.1 Performance Measures 

Sidebar – Principle in Action: Little’s Result
1.2.2 Operations at Control Plane 
1.2.3 Operations at Data Plane 

1.2.4 Interoperability
1.3 The Internet Architecture
1.3.1 Solutions to Connectivity 
Sidebar – Principle in Action: Constantly Challenged Statelessness
1.3.2 Solutions to Scalability 

1.3.3 Solutions to Resource Sharing 

1.3.4 Control-Plane and Data-Plane Operations 

Sidebar – Principle in Action: Flavors of the Internet Architecture
1.4 Open Source Implementations
1.4.1 Open vs. Closed 

1.4.2 Software Architecture in Linux Systems

1.4.3 Linux Kernel

1.4.4 Clients and Daemon Servers

1.4.5 Interface Drivers

1.4.6 Device Controllers
1.5 Book Roadmap: A Packet’s Life 

1.5.1 Packet data structure: sk_buff 
1.5.2 A Packet’s Life in a Web Server 
Sidebar – Performance Matters: From Socket to Driver within a Server
1.5.3 A Packet’s Life in a Gateway 
Sidebar – Performance Matters: From Input Port to Output Port within a Router

Sidebar – Principle in Action: A Packet’s Life in the Internet
1.6 Summary
Common Pitfalls
Further Reading

FAQ
Exercises

 2
Physical Layer (90 pages, 27.4words)


2.1 General Issues



2.1.1 Data and Signal: Analog or Digital
Sidebar – Principle in Action: Nyquist Theorm vs. Shannon Theorem



2.1.2 Transmission and Reception Flows
2.1.3 Transmission: Line Coding and Digital Modulation



2.1.4 Transmission Impairments
Sidebar – Historical Evolution: Software Defined Radio


2.2 Medium



2.2.1 Wired Medium



2.2.2 Wireless Medium


2.3 Information Coding and Baseband Transmission



2.3.1 Source and Channel Coding



2.3.2 Line Coding



Open Source Implementation 2.1: 8B/10B Encoder


2.4 Digital Modulation and Multiplexing



2.4.1 Passband Modulation



2.4.2 Multiplexing


2.5 Advanced Topics



2.5.1 Spread Spectrum



2.5.2 Single-Carrier vs. Multiple-Carrier
2.5.3 Multiple Inputs Multiple Outputs (MIMO)
Open Source Implementation 2.2: IEEE 802.11a Transmitter with OFDM
Sidebar – Historical Evolution: Cellular Standards
Sidebar – Historical Evolution: LTE-advanced vs. WiMAX


2.6 Summary
Common Pitfalls
Further Readings


FAQ


Exercises
3
Link Layer (107 pages, 36.7K words)
3.1 General Issues

3.1.1 Framing

3.1.2 Addressing

3.1.3 Error Control and Reliability
Sidebar – Principle in Action: CRC or Checksum?

Sidebar – Principle in Action: Error Correction Code
Open Source Implementation 3.1: Checksum
Open Source Implementation 3.2: Hardware CRC32
3.1.4 Flow Control

3.1.5 Medium Access Control

3.1.6 Bridging

3.1.7 Link-Layer Packet Flows

Open Source Implementation 3.3: Link-Layer Packet Flows in Call Graphs

3.2 Point-To-Point Protocol

3.2.1 High-level Data Link Control (HDLC)

3.2.2 Point-to-Point Protocol (PPP)

3.2.3 Internet Protocol Control Protocol (IPCP)
Open Source Implementation 3.4: PPP
3.2.4 PPP over Ethernet (PPPoE)

3.3 Ethernet (IEEE 802.3)

3.3.1 Ethernet Evolution: A Big Picture
Sidebar – Historical Evolution: Competitors to Ethernet
3.3.2 The Ethernet MAC

Open Source Implementation 3.5: CSMA/CD
Sidebar – Historical Evolution: Power-line Networking: HomePlug
3.3.3 Selected Topics in the Ethernet
Sidebar – Historical Evolution: Backbone Networking: SONET/SDH and MPLS
Sidebar – Historical Evolution: First-mile Networking: xDSL and Cable Modem
3.4 Wireless Links

3.4.1 IEEE 802.11 Wireless LAN

Sidebar - Principle in Action: Why not CSMA/CD in WLAN?

Open Source Implementation 3.6: IEEE 802.11 MAC Simulation with NS-2

3.4.2 Bluetooth Technology 
Sidebar --- Historical Evolution: Comparing Bluetooth and IEEE 802.11

3.4.3 WiMAX Technology 
Sidebar – Historical Evolution: Comparing 3G, LTE, and WiMAX
3.5 Bridging

3.5.1 Self Learning
Sidebar – Historical Evolution: Cut-through vs. Store-and-Forward 

Open Source Implementation 3.7: Self-Learning Bridging
3.5.2 Spanning Tree

Open Source Implementation 3.8: Spanning Tree
3.5.3 Virtual LAN
Sidebar – Principle in Action: VLAN vs. Subnet
3.6 Device Drivers of a Network Interface

3.6.1 Concepts of Device Drivers

3.6.2 Communicating with Hardware in a Linux Device Driver

Open Source Implementation 3.9: Probing I/O ports, Interrupt Handling and DMA

Open Source Implementation 3.10: The Network Device Driver in Linux
Sidebar – Performance Matters: Interrupt and DMA Handling within a Driver 
Sidebar – Historical Evolution: Standard Interfaces for Drivers

3.7 Summary
Common Pitfalls
Further Readings
FAQ
Exercises
 
4   Internet Protocol Layer (140 pages, 43.1K words)
4.1 General Issues

4.1.1 Connectivity Issues
Sidebar – Principle in Action: Bridging vs. Routing

4.1.2 Scalability Issues

4.1.3 Resource Sharing Issues

4.1.4 Overview of IP-Layer Protocols and Packet Flows
Open Source Implementation 4.1: IP-Layer Packet Flows in Call Graphs
Sidebar – Performance Matters: Latency within the IP Layer
4.2 Data-Plane Protocols: Internet Protocol

4.2.1 Internet Protocol version 4

Open Source Implementation 4.2: IPv4 Packet Forwarding

Sidebar – Performance Matters: Lookup Time at Routing Cache and Table 

Open Source Implementation 4.3: IPv4 Checksum in Assembly 

Open Source Implementation 4.4: IPv4 Fragmentation

4.2.2 Network Address Translation (NAT)

Sidebar – Principle in Action: Different Types of NAT

Sidebar – Principle in Action: Messy ALG in NAT

Open Source Implementation 4.5: NAT

Sidebar – Performance Matters: CPU Time of NAT Execution and Others

4.3 Internet Protocol Version 6
Sidebar – Historical Evolution: NAT vs. IPv6
4.4 Control-Plane Protocols: Address Management
4.4.1 Address Resolution Protocol 

Open Source Implementation 4.6: ARP

4.4.2 Dynamic Host Configuration

Open Source Implementation 4.7: DHCP

4.5 Control-Plane Protocols: Error Reporting 
Open Source Implementation 4.8: ICMP
4.6 Control-Plane Protocols: Routing
4.6.1 Routing Principles 

Sidebar – Principle in Action: Optimal Routing 

4.6.2 Intra-domain Routing 

Open Source Implementation 4.9: RIP 

Open Source Implementation 4.10: OSPF 
Sidebar – Performance Matters: Computation Overhead of Routing Daemons
4.6.3 Inter-domain Routing 

Open Source Implementation 4.11: BGP 

4.7 Multicast Routing 

4.7.1 Group Membership Management

4.7.2 Multicast Routing Protocols

Sidebar – Principle in Action: When the Steiner Tree Differs From the Least-cost-path Tree

4.7.3 Inter-domain Multicast

Sidebar – Principle in Action: IP Multicast or Application Multicast?

Open Source Implementation 4.12: Mrouted

4.8 Summary
Common Pitfalls
Further Readings
FAQ
Exercises
 
5   Transport Layer (89 pages, 27.1K words)
5.1 General Issues

5.1.1 Node-to-Node vs. End-to-End

5.1.2 Error Control and Reliability

5.1.3 Rate Control: Flow Control and Congestion Control

5.1.4 Standard Programming Interfaces

5.1.5 Transport-Layer Packet Flows
Open Source Implementation 5.1: Transport-Layer Packet Flows in Call Graphs 

5.2 Unreliable Connectionless Transfer: UDP
Open Source Implementation 5.2: UDP and TCP Checksum
5.3 Reliable Connection-Oriented Transfer: TCP
5.3.1 Connection Management
5.3.2 Reliability of Data Transfers

5.3.3 TCP Flow Control

Open Source Implementation 5.3: TCP Sliding Window Flow Control
5.3.4 TCP Congestion Control 

Sidebar – Historical Evolution: Statistics of TCP Versions 

Open Source Implementation 5.4: TCP Slow Start and Congestion Avoidance
Sidebar – Principle in Action: TCP Congestion Control Behaviors
5.3.5 TCP Header Format 

5.3.6 TCP Timer Management 

Open Source Implementation 5.5: TCP Retransmit Timer
Open Source Implementation 5.6: TCP Persistence Timer and Keepalive Timer
5.3.7 TCP Performance Problems and Enhancements 

Sidebar - Historical Evolution: Multiple-Packet-Loss Recovery in NewReno, SACK, FACK and Vegas 
Sidebar – Principle in Action: TCP for Networks with Large Bandwidth-Delay Product
5.4 Socket Programming Interfaces 

5.4.1 Socket
5.4.2 Binding Applications through UDP and TCP
Sidebar – Principle in Action: SYN Flooding and Cookies
Open Source Implementation 5.7: Socket Read/Write Inside out 
Sidebar – Performance Matters: Interrupt and Memory Copy at Socket
5.4.3 Bypassing UDP and TCP
Open Source Implementation 5.8: Bypassing the Transport Layer
Open Source Implementation 5.9: Making Myself Promiscuous
Open Source Implementation 5.10: Linux Socket Filter
5.5 Transport Protocols for Real-Time Traffic
5.5.1 Real-Time Requirements
Sidebar – Principle in Action: Streaming: TCP or UDP?
5.5.2 Standard Data-Plane Protocol: RTP 

5.5.3 Standard Control-Plane Protocol: RTCP 

Sidebar – Historical Evolution: RTP Implementation Resources
5.6 Summary 
Common Pitfalls
Further Readings
FAQ
Exercises
 
6   Internet Services (146 pages, 45.1K words)
Sidebar – Historical Evolution: Mobile Applications
6.1 General Issues
6.1.1 How Ports Work
6.1.2 How Servers Start
6.1.3 Classification of Servers 

Sidebar – Historical Evolution: Cloud Computing
6.1.4 Characteristics of Application Layer Protocols 
6.2 Domain Name System (DNS)
6.2.1 Introduction 

6.2.2 Domain Name Space 

6.2.3 Resource Records 

6.2.4 Name Resolution 

Sidebar – Historical Evolution: Root DNS Servers Worldwide

Open Source Implementation 6.1: BIND
6.3 Electronic Mail 

6.3.1 Introduction 

6.3.2 Internet Message Standards 

6.3.3 Internet Mail Protocols 
Sidebar – Historical Evolution: Web-based Mail vs. Desktop Mail
Open Source Implementation 6.2: qmail
6.4 World Wide Web (WWW)

6.4.1 Introduction 

6.4.2 Web Naming and Addressing 

6.4.3 HTML and XML 

6.4.4 HTTP 
Sidebar – Principle in Action: Non-WWW Traffic over Port 80 or HTTP
Sidebar – Historical Evolution: Google Applications
6.4.5 Web Caching and Proxying 

Open Source Implementation 6.3: Apache 
Sidebar – Performance Matters: Throughput and Latency of a Web Server
6.5 File Transfer Protocol (FTP)
6.5.1 Introduction 

6.5.2 The Two-Connection Operation Model: Out-of-Band Signaling 

Sidebar – Historical Evolution: Why Out-of-band Signaling in FTP?

6.5.3 FTP Protocol Messages 

Open Source Implementation 6.4: wu-ftpd 

6.6 Simple Network Management Protocol (SNMP)
6.6.1 Introduction 

6.6.2 Architectural Framework

6.6.3 Management Information Base (MIB)
6.6.4 Basic Operations in SNMP

Open Source Implementation 6.5: Net-SNMP

6.7 Voice over IP (VoIP)
6.7.1 Introduction 

Sidebar – Historical Evolution: Proprietary VoIP Services – Skype and MSN 

6.7.2 H.323

6.7.3 Session Initialization Protocol (SIP)

Sidebar – Historical Evolution: H.323 vs. SIP

Open Source Implementation 6.6: Asterisk

6.8 Streaming
6.8.1 Introduction 

6.8.2 Compression Algorithms 

6.8.3 Streaming Protocols 

6.8.4 QoS and Synchronization Mechanisms 

Sidebar – Historical Evolution: Streaming with Real Player, Media Player, QuickTime, and YouTube 

Open Source Implementation 6.7: Darwin 

6.9 Peer-To-Peer Applications (P2P)
6.9.1 Introduction 
Sidebar – Historical Evolution: Popular P2P Applications
Sidebar – Historical Evolution: Web 2.0 Social Networking: Facebook, Plurk and Twitter
6.9.2 P2P Architectures 

6.9.3 Performance Issues of P2P Applications 

6.9.4 Case Study: BitTorrent 

Open Source Implementation 6.8: BitTorrent
6.10 Summary
Common Pitfalls
Further Readings
FAQ
Exercises
 
7   Internet QoS (50 pages, 16.0K words)
7.1 General Issues
Sidebar - Historical Evolution: The QoS Hype around 2000s 
Open Source Implementation 7.1: Traffic Control Elements in Linux 

7.2 QoS Architectures
7.2.1 Integrated Service (IntServ)
7.2.2 Differential Service (DiffServ)

Sidebar – Principle in Action: Why Both DiffServ and IntServ Failed

Sidebar – Principle in Action: QoS in Wireless Links
7.3 Algorithms for QoS Components 

7.3.1 Admission Control 

Open Source Implementation 7.2: Traffic Estimator 

7.3.2 Flow Identification 

Open Source Implementation 7.3: Flow Identification 

7.3.3 Token Bucket

Open Source Implementation 7.4: Token Bucket

7.3.4 Packet Scheduling

Open Source Implementation 7.5: Packet Scheduling

7.3.5 Packet Discarding

Open Source Implementation 7.6: Random Early Detection (RED)

Sidebar – Historical Evolution: QoS Components in Daily Usage Today

7.4 Summary
Common Pitfalls
Further Readings
FAQ
Exercises
 
8   Network Security (73 pages, 23.7K words)
8.1 General Issues
8.1.1 Data Security 

8.1.2 Access Security 

8.1.3 System Security 

8.2 Data Security 

8.2.1 Principles of Cryptography

Open Source Implementation 8.1: Hardware 3DES
Sidebar – Principle in Action: Secure Wireless Channel

8.2.2 Digital Signature

Open Source Implementation 8.2: MD5

8.2.3 Link Layer Tunneling
8.2.4 IP Security (IPSec)

Open Source Implementation 8.3: AH and ESP in IPSec

8.2.5 Transport Layer Security
Sidebar – Historical Evolution: HTTP Secure (HTTPS) and Secure Shell (SSH)
8.2.6 Comparison of VPNs
8.3 Access Security

8.3.1 Introduction

8.3.2 Network/Transport Layer Firewall

Open Source Implementation 8.4: Netfilter and iptables

8.3.4 Application Layer Firewall

Open Source Implementation 8.5: FireWall Toolkit (FWTK)
Sidebar –Principle in Action: Wireless Access Control

8.4 System Security
8.4.1 Information Gathering
8.4.2 Vulnerability Exploiting
8.4.3 Malicious Code

Open Source Implementation 8.6: ClamAV
8.4.4 Typical Defenses
Sidebar -- Principle in Action: Bottleneck in IDS
Sidebar -- Principle in Action: Wireless Intrusions

Open Source Implementation 8.7: Snort

Open Source Implementation 8.8: SpamAssassin
Sidebar – Performance Matters: Comparing Intrusion Detection, Anti-Virus, Anti-Spam, Content Filtering, and P2P Classification
8.5 Summary
Common Pitfalls
Further readings
FAQ
Exercises

Appendices (76 pages, 20.7K words)
Appendix A
Who’s Who (17 pages)
Overview
A.1 IETF: Defining RFCs

A.1.1 IETF History
Sidebar – Historical Evolution: Who’s Who in IETF

A.1.2 The RFC Process
A.1.3 The RFC Statistics
A.2 Open Source Communities

A.2.1 Beginning and Rules of the Game

A.2.2 Open Source Resources

A.2.3 Websites for Open Source

A.2.4 Events and People
Sidebar – Historical Evolution: Who’s Who in Open Source

A.3 Research and Other Standard Communities
A.4 History
Further Readings
Appendix B
Linux Kernel Overview (15 pages)
Overview
B.1 Kernel Source Tree

B.2 Source Code of Networking

B.3 Tools for Source Code Tracing
Sidebar - Example: Trace of Re-assembly of IPv4 Fragments
Further Readings

Appendix C
Development Tools (25 pages)
Overview
C.1 Programming

C.1.1 Text Editor – vim and gedit
C.1.2 Compiler – gcc
C.1.3 Auto-compile – make
C.2 Debugging

C.2.1 Debugger – gdb
C.2.2 GUI Debugger – ddd
C.2.3 Kernel Debugger – kgdb
C.3 Maintaining

C.3.1 Source Code Browser – cscope
C.3.2 Version Control – cvs and svn
C.4 Profiling

C.4.1 Profiler – gprof
C.4.2 Kernel Profiler – kernprof
C.5 Embedding

C.5.1 Tiny Utilities – busybox
C.5.2 Embedding Development – uClibc and buildroot
Further Readings

Appendix D
Network Utilities (19 pages)
Overview
D.1 Name-Addressing

D.1.1 Internet’s Who-is-Who – host
D.1.2 LAN’s Who-is-Who – arp
D.1.3 Who am I – ifconfig
D.2 Perimeter-Probing

D.2.1 Ping for Living – ping
D.2.2 Find the Way – traceroute
D.3 Traffic-Monitoring

D.3.1 Dump Raw Data – tcpdump
D.3.2 GUI Sniffier – Wireshark
D.3.3 Collect Network Statistics – netstat
D.4 Benchmarking

D.4.1 Host-to-Host Throughput – ttcp
D.4.2 Web Server Performance – WebBench
D.5 Simulation and Emulation

D.5.1 Simulate the Network – ns
D.5.2 Emulate the Network – NIST Net
D.6 Hacking
D.6.1 Exploits Scanning – Nessus
Further Readings

1

