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Texts: 

1. Stokes, Houston H. Specifying and Diagnostically Testing Econometric Models,  Second Edition Quorum Books, 1997. Selected Chapters of 3rd edition (20xx) on line under E537. All chapters under E535.
2. Enders, Walter, Applied Economic Time Series.  Third Edition Wiley 2010.
3. Stokes, Houston,  The Essentials of Time Series Modeling: An Applied Treatment with Emphasis on Topics Relevant to Financial Analysis,  Preliminary Chapters on line. (200x)

Computer Material:

1. Stokes, Houston, “B34S On-Line Help Manual”  450 pages. Available on line from B34S page. Help is available on individual commands for this page.

2. Doan, Thomas, Rats Version 9 Reference Manual. Estima 2015.

3. Doan, Thomas, Rats Version 9 User's Guide.  Estima 2015.

4. Becketti, Sean, Introduction to Time Series Using Stata, Stata Press 2013

Note: RATS manuals can be accessed from Windows RATS versions in lab on 7th floor.

Other Related Material:

1. Neuburger & Stokes, "The Relationship between Interest Rates and Gold  Flows under the Gold Standard: A New Empirical Approach," Economica,  Volume 46, August 1979, pp 261 - 279

2. Stokes & Neuburger, "The Effect of Monetary Changes on Interest Rates:  A Box-Jenkins Approach," The Review of Economics and Statistics, Vol.  LXI, No. 4, November 1979, pp 534 - 548

3. Box, Jenkins and Reinsel, Time Series Analysis Forecasting and Control, 4th Edition  Wiley 2008. 203-208. 
4. Hastie, Trevor, Rob Tibshirani and Jerome Friedman. . The Elements of Statistical Learning: Data Mining, Inference, and Prediction.. New York: Springer 2001. Second edition 2009.

5. Tsay, Ruey Analysis of Financial Time Series. 3nd Edition 2010, Wiley, New York.

6.  Theil, H. “On the Use of Incomplete Prior Information in Regression Analysis,” Journal of the American Statistical Association 58. No. 302 (1963): pp 401-414.

7. Zellner, A., and Franz Palm. "Time Series Analysis and Simultaneous Equation Econometric Models." Journal of Econometrics 2 (1974): 17-54. Republished as Chapter 1 in Zellner, A., and Franz Palm Edition The Structural Econometric Time Series Analysis Approach. UK: Cambridge University Press, 2004.
8. Engle-Granger "Co-Integration and Error Correction: Representation, Estimation and Testing" Econometrica 55. No. 2 (March 1987):  251-276.
In the assignments, every effort has been made to outline the computer code needed to minimize the "learning curve". Assignments can be done on user’s PCs (If they install B34S or have RATS on the local PC) or in the lab on the 7th floor where both RATS and B34S are available. Students can obtain accounts on the Linux machine smith.econ.uic. The advantage of smith over PC use is that more storage is available and longer jobs can be run.  On the PC high resolution graphics are available.
General Outline of the course:


The purpose of the course is to introduce the student to statistical time series analysis. ARIMA and transfer function model building will be discussed and students will be asked to apply their knowledge in several computer exercises which will be graded. There will be a take home final. The grading will be 70% computer exercises and 15% take home final and 15% the in-class final. If time permits we will discuss various shrinkage techniques such as Principle Component (PC),  Partial Least Squares (PLS) and the Continuum Regression Model (CRM) which are very useful in “Big Data” applications. These techniques are discussed to better prepare you for data analysis job interviews. While there is brief discussion of spectral analysis in this course, more work is done on this topic in Econ 538. The lectures will be from Stokes Specifying and Diagnostically Testing Econometric Models  (1997, 200x) and Essentials of Time Series Modeling  (200x), both of which are in draft form and subject to change. These can be downloaded from the class web page. The B34S software is available on smith and will be given to all students in the course. Matlab is available in the computer lab on the 7th floor and in the university labs.  Some very basic time series analysis (ARIMA, ACF, PACF) can be performed with Stata but the capability for these time series applications is somewhat limited at this timer.  Data sets used in the course projects can be converted to Stata format using b34s.
b34sexec options ginclude('b34sdata.mac')    member(fwheat)$ b34srun$

b34sexec stataio writestata file('fwheat.dct')   heading('Wheat Data');

                 b34srun;

Some Stata help listed next
program getdata

drop _all

infile using "gas.dct",clear

gen n=_n

tsset n

tsline gasout

end;

program examples

corrgram gasout

arima gasout, arima(1,1,1)

arima gasout, ar(1)

arima gasout, ar(1/5)

arima gasout, ma(1/4)

end

program modelgasout

arima gasout, ar(1,2,3)

predict modelfit

predict r, resid

ac      r, name(top,replace)

pac     r, name(middle,replace)

tsline gasout modelfit, name(bottom,replace)

graph combine top middle bottom, rows(3)

end

program vargas_lag10

varbasic gasin gasout, lags(1,2,3,4,5,6,7,8,9,10)

varlmar , mlag(10)

varstable

varnorm

vargranger

end

program vargas_lag6

varbasic gasin gasout, lags(1,2,3,4,5,6)

varlmar , mlag(6)

varstable

varnorm

vargranger

end

* getdata

* examples

* vargas_lag10

* vargas_lag6
* import test.csv

import delimited test
Late submission of projects and take home exams and attendance

Unless given prior written permission, 15% per day will be taken off late work. Students turning in their work on time in the past have been at a disadvantage to those that turn in their work after having heard what others have done. Class participation is key to learning how to use time series techniques. 
Joint work


You can work with a maximum of one other person but all students must submit their own work. The write-ups of the two team members must be unique.  The idea is that it may be helpful to discuss results with someone else but it is not beneficial to "farm out" work to your teammate and as a result not master the material. Teams are formed informally but, once formed, must stay together for the semester unless a "divorce" is explicitly granted in writing. If you work with someone else you must list that person's name on your front page.
R is also a viable option for some time series problems, especially in E538 although error message are in general lacking. 
Problem Sets:


There are 7 problem sets which are due on the 3th, 5th, 7th, 9th, 11th,  13th   and 15th week of the course. These problem sets should be typed and the output discussed. Results should be listed in the text and selected computer outputs attached only to show your calculations. Presentation of results is a key skill and will be given weight in the final grade. Extra credit will be given if alternative software systems are used to further analyze and validate the results.
Computer Skills:


After each class there will be a weekly "computer camp" to help clear up any problems that have not been addressed in class. Unlike OLS modeling, developing an ARMA filter takes practice. For that reason class time will be devoted to mastering this skill. Students are encouraged to try to model their own datasets. The B34S bjiden and bjest commands provide the basic capability to identify and estimate a user specified model. The code for these commands came from the Peck program that was developed for Box and Jenkins.  A major objective of the course is to train the student to estimate such models. The matrix command autobj allows automatic model identification and estimation. On a user PC it is possible to filter and estimate more than a 1000 series and make forecasts in under a minute. This allows a market trader to monitor a large number of stocks and make trade within a 5 minute window. The models identified and estimated using autobj can usually be beaten by the user with a "custom" model.  However, users can check their preliminary models with ACF analysis, inspection of the sum of squares of the residual and against models against those identified by automatic methods. Knowledge of the theory in necessary to use automatic methods effectively. However in business applications, the large number of series generally suggests that automatic methods are the best way to go.
Recursive, out-of-sample forecasting simulations will give the user an idea of whether the "custom" model, has in fact over-fit the data. The B34S gamfit and marspline commands can be used to estimate AR(k) models using threshold effects and can provide interesting and useful diagnostic tools during the model building process.  The B34S pls command can be used to study the importance of various lags in a VAR model. 
Brief Road Map of Material Covered in Economics 537-538 – Read to get an overview.

Do not expect to understand at first reading!
A  multiple input time series model Transfer function Model) can be written as  
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where 
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which is an ARIMA model or filter. How to identify and estimate (2) is an important learning objective. ARIMA models have proved to be very popular in finance. An OLS model of k variables on the right transforms (1)  to


[image: image11.wmf]1

k

tiit

i

yxu

mb

=

=++

å










(2A)

Which if estimated by GLS becomes
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The volatility or the second moment of a stock model, is often of equal or more interest than the level of first moment which may be hard to forecast since some theories argue that it is essentially random in an efficient market. Assuming 
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The ARCH and GARCH class models relax the constant conditional variance assumption. The ARCH model assumes
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In the literature this is usually written
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where 
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 is the error of the first moment equation. ARCH/GARCH models attempt to explain variance clustering in the residuals and imply nonlinear dependence among the squared errors of the first moment model. If we define 
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which can be seen as analogous to an ARMA(r,s) model on the first moment. For the second moment this is often referred to as a GARCH(r,s) model.  If 
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 we have the usual ARCH(s) model which is a special case of the more general GARCH(r,s) model. We start our discussion by showing the most general specification and from there showing that other models are related. There are many extensions of the GARCH model that include allowing for different distributions of the error and to feeding the expected volatility back in the first model (GARCH-M Model).
A transfer function model  
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Here the second moment appears in the first moment equation. The ARCH/GARCH class of models provide alternative specifications of (6).

 If there is no noise model and no lags, then (1) can be written as the usual OLS model
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which is a special case.
All the above models are "single equation" in that there is one dependent variable. In Economics 538 we relax this assumption and jointly estimate multiple series in a manner that allows errors from one model to map to another model. This is a major extension of 3SLS Models where the error terms were allowed to be related only contemporaneously.  In these models
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where 
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has been suitably differenced to achieve stationarity. Assuming k=3, then (8) can be written in expanded form as
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If for 
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then equation (8) reduces to three ARIMA models of the form  of equation (2), where
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and
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and where 
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are the AR and MA polynomials of the 
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In such a situation, a transfer function of the form of equation (1) can be estimated. If, on the other hand for j > i
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and/or
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then there is feedback in the system and a transfer function model of the form of equation (1) is not the appropriate way to proceed.  The above discussion has highlighted the fact that the VARMA model of the form of equation (8) is a very general functional form of which the transfer function and the ARIMA model are increasingly more special cases. If we assume that  
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 or that D(B) is a matrix of degree 0 in B, then equation (8) reduces to the VAR form of the model
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where 
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. In the more general case, a VARMA model, such as equation (8), can be written as a VAR model, provided that D(B) is invertible. Here
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In a like manner, equation (8) can be written in VMA form as
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ADVANCE \d3or that G(B) is a matrix of degree zero  in B. In general,
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if G(B) is invertible.is to be stressed that provided invertibility conditions are satisfied, equations (8), (16) and (18) are alternative forms. Usually, equation (8), the VARMA form, is the most parsimonious representation. Equation (16), the VAR form, is usually estimated first  as a way to identify the order of the VARMA model. Sims (1980) advocated estimating the model in the form of equation (16) and calculating R(B) in equation (18) as 
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. For example, the term R21(B) measures the effect of an unexplained shock "innovation" in the first series on the second series. The concept of Granger (1969) causality is related to the econometric concept of exogenaity. A series 
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.   Using the Tiao-Box (1981) approach, the assumptions needed to estimate equation (9) include the following:

- What variables to place in 
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- The orders of the differencing in 
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 to make the series stationary.

- The maximum degree of any element in the matrix Q(B).

Cointegration analysis, based on the use of unit roots, helps determine if in fact (8) is an appropriate representation.

The series filtered by (2) can be studied in the frequency domain using spectral analysis. Often times the spectrum is of more interest that the AR and MA coefficients. In modern macro model building the Hodrick-Prescott Filter and Baxter King Filters are essentially spectral filters to remove (filter out) information from a series so that only "business cycle" frequencies are left. Spectral analysis is needed to understand such tools. A VAR model of the forms of (16) can be estimated and the results viewed in the frequency domain.

As an extension of the GARCH/ARCH models to the multi-equation domain, BGARCH or bivariate GARCH models can be used to model both the first and second moment of a VARMA model.
The above models may not be able to "clean" or filter a series of systematic nonlinear patterns. MARS, PISPLINE, Projection Pursuit and Generalized Additive Models (GAM)  provide powerful time series tools to deal with non-linearity of the error process of a time series model. Random Forest models are another way to proceed. Various nonlinearity tests will be employed to study whether these approaches are successful.  If nonlinearity is indicated, a number of procedures that are discussed in in Hastie-Tibshirani-Friedman (2009) can be applied. 

Option 1:  Model exact functional form. Direct Estimation of a nonlinear specification is clearly the best choice if the model is known for certain. This is many times not possible.

Option 2: GAM and ACE Models. The GAM model is an especially valuable nonlinear exploratory tool that investigates possible nonlinearity by fitting polynomials to the right hand side variables. Graphic analysis of the smoothed series gives feedback on whether there is low dimensional nonlinearity. ACE models smooth both the right and left hand side variables and make estimation of such models as 
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 possible.  While neither method detects variable interactions, both allow manual incorporation of interaction variables in the model. Comparison of GAM leverage plots with OLS plots indicate the type of nonlinearity that is being estimated.  


Option 3: MARS Modeling provides an automatic method to identify locally linear partitions of the data based on threshold values and potential interactions among the variables. As a special case of MARS modeling, lags of the dependent variable can be included in the modeling dataset to handle time series applications in the spirit of Threshold Autoregressive (TAR) models. Model nonlinearity can be displayed using leverage plots that map the knots and interactions found at specific regions in the n-dimensional nonlinear space. The MARS estimator is of the shrinkage class that provides a way to reduce the number of explanatory variables while allowing for the possibility of nonlinearity. An advantage of MARS over GAM and ACE models is that 2-3 way interactions can be detected and modeled. Graphical analysis of the knot vectors that are identified and used in the OLS estimation step involving transformed data can be inspected to identify specific thresholds present in the data. 


Option 4: LOESS Modeling. This approach is especially useful if there is substantial local structure. It is not suitable for large datasets or where there are many right hand side variables.


Option 5:   The Projection Pursuit model is a nonparametric multiple regression approach that only assumes continuous derivatives for the regression surface. In contrast to recursive  partitioning methods that can be characterized as local averaging procedures, projection pursuit models a regression surface as a sum of general smooth functions of linear combinations of the predictor variables. Graphical analysis using leverage plots can be employed to interpret the estimated model.


Option 6: Exploratory Projection Pursuit Analysis can be used to explore possible nonlinearity in multivariate data by assigning a numerical index to every projection that is a function of the projected data density. The number of large values in the projection index indicates the complexity of the data.


Option 7: Random Forest Modeling. A random forest model uses bagging to improve the performance of a CART type model. The performance of a classification problem is improved by estimating many models and by voting to select the appropriate class. For a problem involving a continuous left-hand side variable, averaging is used to improve the out-of-sample performance. The basic idea of the random forest method is to randomly select a bagged dataset, estimate a model using a fixed number of randomly selected input variables and, using this model  make predictions for the out-of-bag data. This is repeated multiple times. The random forest technique is especially suitable for classification problems involving many possible outcomes. While probit and logit models can be used when there are a small number of classes such as in the models discussed in  Stokes (20xx, chapter 3), for research problems containing large numbers of classes, these methods are not suitable. Random Forest models can be used  successfully in such cases, as well as cases typically addressed through classical probit and logit models.  For continuous left hand side variable problems random forest methods are suitable for high dimension nonlinear problems involving many right hand side variables. For near linear models or for models with few right hand side variables, random forest models will not perform as well.


Option 8.  If there is no left-hand side variable, the options listed above are not applicable. Cluster analysis that includes both k-means and hierarchical models attempts to place variables in a predetermined number of classes and can be used for exploratory data analysis. 


Option 9.  In many cases it pays to employ various shrinkage models including PLS, PC, CRM. 
The PC or principle component approach uses the SVD to factor the X matrix 
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Where the columns of U are orthogonal. The principle component coefficients 
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Are related to the OLS coefficients
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While the principle component regression model (PC), shrinks the X matrix by using orthogonal projections that key on high variance in the X matrix only, the partial least squares procedure (PLS), first suggested by Wold (1975), keys on both  high variance and correlation with the left hand side variable y. As such it can usually explain more variance than the PC approach given that the number of projections is less than the number of columns in X. Detail on the PLS model and its variant the CRM model is contained in Stokes (20xx, chapter 10) which also provides matlab and b34s code.

This "roadmap" has only touched on the highlights of what will be covered in 537-538. Major emphasis will be placed on research methods in time series analysis and students are encouraged to bring their research topics to class for discussion.  It has been found that it is important to fully understand the roadmap before we start the discussion of filtering so that what is being learned is seen in the broader perspective. 

Software

Software used in the course includes B34S which contains the original Peck program developed by Box-Jenkins, Rats and Stata. In addition SAS capability will be discussed. Of interest is the number of ways software developers have implemented ARIMA and transfer function models. The job rep.b34 with output rep.out and log rep.log illustrate convergence differences and alternative ways to calculate the PACF. This will be discussed in class. 
Assignments

Note: 
Stokes (1997) refers to the latest on line version of Specifying and Diagnostically Testing Econometric Models. 
Stokes (200x) refers to The Essentials of Time Series Modeling: An Applied Treatment with Emphasis on Topics Relevant to Financial Analysis which is on-line and available.  
If errors are found in these manuscripts I would appreciate hearing about them.  Also let me know if some material is not clear.

1. Forecasting Methods and their Objectives.

Stokes (200x) Chapter 2.
Problem set # 1 due 3th week.

2. Fundamental Concepts

      Stokes (1997) Chapter 7 & 15, pp 205-212, 321-337

                  Stokes (200x) Chapter 3-4

                  Enders  Chapter 2, 4 

                  Problem set #2 due 5th  week.

3. Estimation, Diagnostic Checking and Forecasting Using ARIMA Models


Stokes-Jones-Neuburger (1975) Chapter 5.

            Stokes (1997) Chapter 7 & 15.

Stokes (200x) Chapter 5

Problem set # 3 due 7th week.

4. Transfer Function Model Building – Identification and Estimation

Stokes-Neuburger (1979)

    
Neuburger-Stokes (1979)

Stokes (1997) Chapter 7 

Enders (1994) pp 269 – 290

Problem set #4 due 9th week.

5. ARCH/GARCH models

Enders Chapter 3


Stokes (200x) Chapter 7

Stokes (1997)  337-346.

Problem Set # 6 due 13th week
Optional Reading: Tsay (2005) Chapter 2
Problem set #5 due 11th week.

6. Vector Models and Cointegration

Stokes (1997) Chapter 8


Stokes-Neuburger (1998) Chapter 6

Stokes (200x) Chapter 6

Watson (1994)

Pena, Tiao, Tsay Chapter 15 by Johansen

Enders (1995) page 355-418

Hamilton (1994) Chapter 11

Box - Tiao (1983)
Tiao Chapter 14 in Pena, Tiao and Tsay (2003)


Problem set # 6 due 13th week


8. Spectral Models
            Stokes (1997) Chapter 15 and
Stokes-Neuburger (1998) Chapter 7. Discussed further in Economics 538.
Hamilton (1994) Chapter 6

Box - Jenkins (1994) page 35-74

Problem set #7 due 15th week.

9. Final Exam due 16th Week
Problem Set # 1   -   ARIMA Identification using Real Data

Objectives:
Understand ACF, PACF.



Understand Hinich Nonlinearity tests. Discuss other nonlinearity

                        Tests.



Understand Dickey-Fuller and Phillips-Perron tests.



Be able to use automatic modeling capability.

Assignment:


Be sure you are familiar with the material in Enders Chapter 1-3  and Stokes (1997) chapter 7. 

Data from Fuller (1976) page 397 is contained in member FWHEAT of B34SDATA.MAC.

Data from Fuller (1976) page 273 in contained in member FEPROD of B34SDATA.MAC.

The commands

b34sexec options ginclude(’b34sdata.mac’)

                 member(fwheat)$ b34srun$

will create a series BUSHELS showing annual production of wheat in the period 1908-1971 in B34S. 

Means will be:

B34S 8.10Z          (D:M:Y)  14/ 5/05 (H:M:S)  8:19:53   DATA STEP                      WHEAT YIELD 1908-71              PAGE    1 

Variable    Label                                      # Cases      Mean        Std. Dev.    Variance      Maximum       Minimum    

 YEAR      1 YEAR                                            64   1939.50       18.6190       346.667       1971.00       1908.00    

 BUSHELS   2 BUSHELS PER ACRE IN US                          64   17.8141       5.51724       30.4400       33.9000       11.2000    

 CONSTANT  3                                                 64   1.00000       0.00000       0.00000       1.00000       1.00000    

 Number of observations in data file   64                                                                                            

 Current missing variable code         1.000000000000000E+31                                                                         

 Data begins on (D:M:Y)  1: 1:1908  ends  1: 1:1971.   Frequency is      1                                                           

B34S 8.10Z          (D:M:Y)  14/ 5/05 (H:M:S)  8:19:53   DATA STEP                      QUARTERLY GROSS HOURS            PAGE    2 

 Variable    Label                                      # Cases      Mean        Std. Dev.    Variance      Maximum       Minimum    

 YEAR      1 Year                                           100   1960.00       7.24743       52.5253       1972.00       1948.00    

 QUARTER   2 Quarter                                        100   2.50000       1.12367       1.26263       4.00000       1.00000    

 PROD      3 Production workers                             100   40.2880      0.609959      0.372051       41.5300       38.7300    

 CONSTANT  4                                                100   1.00000       0.00000       0.00000       1.00000       1.00000    

 Number of observations in data file   100                                                                                           

 Current missing variable code         1.000000000000000E+31                                                                         

 Data begins on (D:M:Y)  1: 1:1948  ends  1:10:1972.   Frequency is      4                                                           

As discussed in the on-line manual and illustrated in Stokes (1997) page 183. The B34S commands

b34sexec bjiden$

var bushels$ 

seriesn var=bushels name=('wheat data from fuller')$

rtrans var=bushels dif=(2,1)$ 

rauto bushels$

bispec  iauto iturno df adf(4) adft(4) pp app(4) appt(4)$  

b34seend$

will calculate the ACF and PACF for BUSHELS, (1-B)BUSHELS and (1-B)2BUSHELS

and in addition do Hinich (1982) nonlinearity tests, Dickey fuller tests, Phillips Perron tests and the augmented versions of these tests for 4 lags.

The commands

b34sexec options ginclude('b34sdata.mac')

                 member(feprod)$ b34srun$

will load a quarterly series on weekly gross hours per production worker in manufacturing in the period 1948 - 1972 named PROD.

Questions.

1. Define and discuss the use of:

        
- Autocorrelation Function (ACF)

- Partial Autocorrelation Function  (PACF)

2. Discuss why differencing is performed. What types of differencing should be investigated?  How do you know that you have over differenced?

 3. Estimate the ACF and PACF for the Wheat yield series. Use raw data, differenced data and second differenced data. Calculate Dickey Fulley and Phillips Perron unit root tests and augmented and augmented with trend versions for lag 4.

What level of differencing is appropriate? What model should you try?

(Note:  In problem set # 3 you will be estimating these models.)

Be sure to list and plot the data and calculate means.

4. Estimate the ACF  and PACF for the Production data. Be sure to study raw series, differenced series, second differenced data, seasonal differenced data and seasonally and first differenced data. What level of differencing is appropriate? What model should be attempted?

5. Define carefully what is meant by the following notation for models.

    
-    AR(p)

    
-    MA(q)

    
-    ARIMA(p,d,q)

    
-    OLS Regression model.

· Transfer Function Model.

How is each type of model used? Discuss how the different forms are related.

6. Using the matrix command autobj estimate models for BUSHELS and PROD and determine if B34S was able to automatically filter the series. The exact code to do this task is given next:

b34sexec options ginclude('b34sdata.mac')

                 member(fwheat)$ b34srun$

b34sexec matrix;

call loaddata;

call load(rtest);

call autobj(bushels :print :nac 24 :autobuild);

call rtest(%res,bushels,24);

b34srun;

b34sexec options ginclude('b34sdata.mac')

                 member(feprod)$ b34srun$

b34sexec matrix;

call loaddata;

call load(rtest);

call autobj(prod :print :seasonal 4 :nac 24 :autobuild);

call rtest(%res,prod,24);

b34srun;

Note that we tell autobj that we have a quarterly series. What use does autobj make of this? Discuss the models automatically determined? What improvements might you suggest? If the above command are run on a PC, the commands: call load(rtest); call  rtest(%res,bushels,24); will give us high resolution graphs of what has been automatically done.

If on the call to autobj we add the key words :printsteps the program will list intermediate models considered.

7. The B34S routine movebj can be used to make rolling forecasts and graph the results. The below code shows the setup for the GASOUT series:

b34sexec options ginclude('gas.b34'); b34srun;

b34sexec matrix;

call loaddata;

call load(movebj);

call print(movebj);

call echooff;

nout=1;

iseas=0;

ibegin=200;

iprint=0;

rdif=0;

sdif=0;

iwindow=0;

call movebj(gasout,iseas,ibegin,actual,fore,obs,nout,iprint,

            rdif,sdif,iwindow);

call tabulate(obs,actual,fore);

call graph(obs fore,actual :plottype xyplot

                           :nolabel

           :heading '1 step ahead moving forecast');

nout=3;

call movebj(gasout,iseas,ibegin,actual,fore,obs,nout,

iprint,rdif,sdif,iwindow);

call tabulate(obs,actual,fore);

call graph(obs fore,actual :plottype xyplot

                           :nolabel

           :heading '3 step ahead moving forecast');

b34srun;
First run this code. Next modify this code to run the bushels and prod data.  Hint: ibegin must be changed as well as data loading. Set ibegin=50. What does this do?  Since you are printing the movebj program, you will have a chance to study it  and possibly modify it to suit your needs.
Problem Set # 2  - ARIMA Identification and Estimation using Generated Data.

Objectives   
Understand how the Model (filter) and the ACF and PACF are related by the study of generated data.


Understand spectral models and how they relate to time series models

Assignment -  Be sure that you understand Stokes (1979) Chapter 7 very well. 
Also study chapter 15.  In this assignment you will generate data to study what the AFC   and  PACF look like.  You will also look at the spectrum.

1. Discuss how you would know from inspection of the ACF and PACF:

         - a pure MA model

         - a pure AR model

         - a mixed model

2. Explain the significance of the Yule-Walker Conditions. Assume the first 3 significant correlation coefficients are .9, .8, .7. What would the AR coefficients of such a model be? Hint: look at Stokes (1997) equation (7.1-21).

3. Look at Stokes (1997) page 417 to see an example of how an ARIMA model can be generated. The b34s code

b34sexec data noob=501 maxlag=1$

         build ar1 norm difnorm$

         gen norm=rn()$

         gen difnorm=norm-lag(norm)$

         gen ar1=lp(1,1,norm) ar(.5) ma(1.0) values(0.0)$

         b34srun$

Will generate an AR 1 series AR1 having 
[image: image71.wmf]F

1 = .5, a series of random numbers NORM and a difference of the random numbers DIFNORM.

A - Calculate the ACF and PACF for NORM and DIFNORM. What do you observe?  Why? What does this tell you about  differencing?

B - Calculate the ACF  and PACF for AR1.  What is the first order

   autocorrelation? Is it what you would expect?

C - Using b34s estimate an AR1 model for series AR1 using the b34s bjest command. Look at Stokes (1997) for an example on  how to setup a bjest job. Generate some forecasts, say 10 periods out at origin 480. The B34S command would be

Forecast nf=10 nt=480$  

D - How does your model do?

4. Use the B34S to generate series with 1000 final observations with the following properties. 

· (1 - .8B)Xt = (1 +.5B)et
· AR(2) where (1 = .6 and (2 = .3

· MA(2) where (1 = .7 and (2 = .45

· ARMA(3,2) where (ADVANCE \D 6.01ADVANCE \U 6.0 = .2, (ADVANCE \D 6.02ADVANCE \U 6.0 = .3, (ADVANCE \D 6.03ADVANCE \U 6.0 = .4, (1 = .12, (2 = .33

Estimate ACF   PACF and test your model by estimating what you think you have generated using the bjest command.

5. Generate 1000 observations for series with the following models


- AR(1) where (1 = .8


- AR(1) where (1 =-.8


- MA(1) where (1 = .8


- MA(1) where (1 =-.8

and discuss what you find. Discuss what the spectrum would look like.

Computer help. As an alternative to the bjiden  and spectral commands, the matrix command can be used to generate series and draw high resolution graphs. The below listed code from the matrix.mac library illustrates some of this capability that provides an alternative to other approaches. Here we see if the autobj command can filter the series. If this code is run on a graphics system, high quality visuals will be produced. Students are encouraged to modify this code and see what occurs!! 

b34sexec matrix;

call load(rtest);

ar=array(:.7,-.3,.2  ); ma=array(:-.5,-.25);

n=10; start=array(:.1,.05,.0375);

test=genarma(ar,ma,1.0,start,.1,n);

call print(test);

n=10000;

test=genarma(ar,ma,1.0,start,.1,n);

/$ not needed since rtest will make a nice table

acf1=acf(test,24,se,pacf1);

call tabulate(acf1,pacf1);

call graph(acf1,pacf1 :heading 'ACF & PACF of ARMA(3,2)');

call spectral(test,sinx,cosx,px,sx1,freq:1 2 3 2 1);

call graph(freq,sx1:heading 'Spectrum of ARMA(3,2)'

               :plottype xyplot);

call autobj(test :print :nac 24 :npac 24

                   :autobuild );

call rtest(%res,test,48);

b34srun;

Problem Set # 3 - ARIMA Estimation using Real Data.

Objectives:      Be able to identify an ARIMA model.



Be able to transform an ARIMA model

Assignment - Be sure that you understand the material in Enders (1995) Chapter 1-4 and Stokes (1997)  page 155-194. In this assignment you will identify an   ARIMA  model for the data that you studied in Problem #2.

FOR THIS PROBLEM SET I WANT TO SEE ANSWERS IN TEXT. I WILL NOT GIVE FULL CREDIT FOR OUTPUT. PRETEND YOU ARE WORKING ON A PAPER.
1. Outline is some detail the steps that you have to go though if you are to identify and estimate an ARIMA filter.

2. Discuss the relationship between:


a. An ARIMA model.


b. The inverted form.


c. The random shock form.

     
d. What are the advantages of the above forms of the model?

Be sure to illustrate your answer with the appropriate formulas.

3. Using the two data series on wheat and production that you studied in problem 1, estimate an ARIMA filter for both series. Be sure to indicate if you beat the autobj command in terms of the sum of squares of the error.
The instructions  needed to load the data are discussed in problem # 1. 

In the estimation process discuss in detail your thought process that you went through when you selected the appropriate amount of differencing and the correct terms to enter into the model. 

4. Transformation of ARIMA models

Assume a model of the form

XADVANCE \D 6.0tADVANCE \U 6.0  = (((B)/((B))eADVANCE \D 6.0tADVANCE \U 6.0
where ((B) = (1-.3B  + .5B4)  and ((B) = (1-.45B - .33B3)

the b34s commands

b34sexec polysolv$  polydivide top(1,-.45,0.0,.33) 

   bot(1,-.3,0.0,0.0,.5) nterms=40$
b34srun$

will calculate the inverted form while the commands

b34sexec polysolv$ polydivide bot(1,-.45,0.0,.33) 

top(1,-.3,0.0,0.0,.5) nterms=40$ b34srun$

 will calculate the random shock form

Convince yourself you can set up the problem by proving that 1/(1-.5B) = 1 + .5  + .5*.5  + ......

the b34s commands

b34sexec polysolv$ polydivide top(1.0) bot(1.0,-5) nterms=40$





b34srun$

will solve the system and "prove" the multiplier.

Using the b34s polysolv command take the final answers you have for question # 3 and calculate the random shock form and the inverted form. Use nterm = 60.

Problem Set # 4  Transfer Function Modeling
Objectives 
- Learn Transfer Function Model Identification 

- Learn Transfer Function Model Estimation and Causality Testing.

Assignment  -  Be sure you understand the material in Stokes (1997). Another good 

 

reference is Box and Jenkins (1976) Chapter 10 and 11. And Enders 

(2004) pages 247-264. See also Stokes-Neuburger (1979).

Note:
Transfer function modeling is one of the harder estimation tasks.  Be sure and allocation sufficient time to get it done.

Data:           
The Box and Jenkins (1976) series M is contained in b34sdata.mac in

                 
member BJ_MX. The command:



b34sexec options ginclude('b34sdata.mac')

                   member(bj_mx); b34srun;

will load the series T (= time), X (=leading indicator) and Y (=sales) in B34S.

Means obtained should be:

B34S 8.10Z          (D:M:Y)  14/ 5/05 (H:M:S)  8:28:46   DATA STEP                      Box-Jenkins Series M             PAGE    4 

 Variable    Label                                      # Cases      Mean        Std. Dev.    Variance      Maximum       Minimum    

 X         1 Leading Indicator                              150   11.8467       1.21585       1.47830       13.8700       9.75000    

 Y         2 Sales                                          150   229.978       21.4797       461.377       263.300       198.600    

 CONSTANT  3                                                150   1.00000       0.00000       0.00000       1.00000       1.00000    

 Number of observations in data file   150                                                                                           

 Current missing variable code         1.000000000000000E+31                                                                         

 The number of observations in data file   150 


Background.


The leading indicator series is close to being non stationary.  It is very sensitive to starting values for the noise series. 

1. Identify and estimate a  prewhitening filter for the series X.

    Be sure to lead the reader though your thought process.

2. Using the X series filter, filter the Y series (appropriately differed) and perform a 

    preliminary identification of the model:

YADVANCE \D 6.0tADVANCE \U 6.0  = (((B)/((B))XADVANCE \D 6.0tADVANCE \U 6.0   + (((B)/((B))eADVANCE \D 6.0tADVANCE \U 6.0
Be sure to lead the reader through the steps of estimation.

3.  Now using the autobj command estimate the model for X with and without differencing!

      How does the “automatic” model compare with what you think is correct? (To get the most out of this question do #2 100% before you try # 3.)  The below listed code will help on the setup.

b34sexec options ginclude('b34sdata.mac')

                 member(bj_mx); b34srun;

b34sexec matrix;

call loaddata;

call load(rtest);

/$ force no differencing

call autobj(x :print :nac 24 :npac 24  :nodif

              :autobuild );

call rtest(%res,x,48);

call autobj(x :print :nac 24 :npac 24

              :autobuild );

call rtest(%res,x,48);

b34srun;

4.  Using the preliminary specification obtained in step 3, estimate the transfer function  

     model.

5.  Using your model forecast 20 periods out from observation 140.

6.   Liu (1984) has studied the sensitivity of this particular problem to the number of 

observations dropped at the start. Using the B34S IBEGIN option on the BJEST sentence drop from 1  .. 8 observations from your model and see how sensitive the results are to this change.  From all this work, what can you conclude about "near nonstationary" models with MA parameters.

6. Member RES79 in b34sdata.mac contains the data on nominal money, real money and interest rates discussed in Stokes (1997) page 182 - 196 and Stokes-Neuburger (1979). Stokes-Neuburger (1979) discussed the effects of real and nominal money (m2) on interest rates. The nominal results are replicated in Stokes (1997). You are asked to replicate both the real m2 and the nominal m2 results. Interpret your findings. Do you see feedback? Do the impulse response weights of the model make sense in theory? How is the impulse response used?

Problem Set # 5  ARCH/GARCH Modeling

Objectives:  Understand ARCH/GARCH Model building
Read: General Autoregressive Conditional Heteroscedastic (GARCH) Modeling Using the SCAB34S-GARCH and SCA WorkBench  by Houston H. Stokes, Lon-Mu Liu, William J. Lattyak whjich is available in c:\b34slm\pdf\garch_modeling.doc  for an overview.  See also chapter 7 of book 3 by Houston H. Stokes
1. Discuss carefully and show using equations what is meant by ARCH, ARCH-M, and GARCH models. Carefully lay out the GARCH(1,1), GARCH(2,1), GARCH(1,2) and GARCH(2,2) model. Which mod4ls can be estimates using the one pass method, using the two pass method?
2. Identify and discuss the uses of the following models:

· fattail GARCH   
· igarch 

· egarch 
· tgarch 

· etgarch 
3. The file DOW in the B34SDATA.MAC file contains data on the Dow Jones Industrial average for the period Jan 1983 to October 1989. Estimate ARCH(1), ARCH(1)-M and GARCH(1,1), GARCH(2,1), GARCH (1,2) and GARCH(2,2) models for DJONES.  Discuss your findings carefully. A sample setup is provided below.  Not all models will work!!!!! Note: RATS is very sensitive to the way you space commands. SET Y=10 does not work, but SET Y = 10 does!!

b34sexec options ginclude('b34sdata.mac') macro(dow)$

                b34seend$

/$  bhhh method used ..  residuals set to 0 for beginning obs

/$

/$  user must replace gasout with user series name

/$

b34sexec options open('rats.dat') unit(28) disp=unknown$ b34srun$

b34sexec options open('rats.in') unit(29) disp=unknown$ b34srun$

b34sexec options clean(28)$ b34srun$

b34sexec options clean(29)$ b34srun$

b34sexec pgmcall$

  rats  passasts

pcomments('*  ',

          '* data passed from b34s(r) system to rats',

          '*  ') $

pgmcards$

*

* set seriesn = djones(t) - djones(t-1)

set seriesn = djones(t)

compute iter = 100,isiter=100

*

* arch  with ma

*

* see page 5 31 rats manual

*

smpl(series=seriesn)

set v = 1.0

set ra = 0.0

nonlin b0 b1 b2 mu1  a0 a1

frml regresid = seriesn - b0 - b1*seriesn{1}- b2*seriesn{2} $

              + mu1*ra{1}

* note:  to add more series on the right place added lines before

*        + mu1 * ra{1} line

frml archvar  = a0+a1*regresid(t-1)**2

frml archlogl = (v=archvar(t)),(ra(t)=regresid(t)), $

                   .5*(log(v)+ra(t)**2/v)

linreg seriesn

# constant seriesn{1} seriesn{2}

compute b0=%beta(1),b1=%beta(2),b2=%beta(3)

compute a0=%seesq, a1=.05, mu1=0.0

* maximize(method=simplex,recursive,iterations=iter) archlogl 3 *

nlpar(subiterations=isiter)

maximize(method=bhhh,recursive,iterations=iter) archlogl 3 *

smpl(series=ra)

statistics ra

set rssa = ra(t)*ra(t)

statistics rssa

   smpl(series=rssa)

   compute sumsqra = %sum(rssa)

   display 'sum of squares of ra' sumsqra

*

b34sreturn$

b34srun$

b34sexec options close(28)$ b34srun$

b34sexec options close(29)$ b34srun$

b34sexec options

         dodos('start /w /r    rats32s rats.in /run')

         dounix('rats    rats.in rats.out')$ B34SRUN$

b34sexec options npageout

    writeout('Output from Rats',' ',' ')

    copyfout('rats.out')

    dodos('erase rats.in','erase rats.out','erase rats.dat')

    dounix('rm rats.in','rm rats.out','rm rats.dat') $

    b34srun$

Modern Rats Style.  Note Graphs here!!!

b34sexec options ginclude('b34sdata.mac') macro(dow)$

                b34seend$

/$  bhhh method used ..  residuals set to 0 for beginning obs

/$

/$  user must replace gasout with user series name

/$

b34sexec options open('rats.dat') unit(28) disp=unknown$ b34srun$

b34sexec options open('rats.in') unit(29) disp=unknown$ b34srun$

b34sexec options clean(28)$ b34srun$

b34sexec options clean(29)$ b34srun$

b34sexec pgmcall$

  rats  passasts

pcomments('*  ',

          '* data passed from b34s(r) system to rats',

          '*  ') $

pgmcards$

*

* set seriesn = djones(t) - djones(t-1)

set seriesn = djones(t)

compute iter = 100,isiter=100

*

* garch(1,1)

*

* see pages 206-211 of Version 6 Reference Manual

*

*

garch(p=1,q=1,resids=at,hseries=fvar,regressors) / seriesn

# constant seriesn{1} seriesn{2}

graph(header="Residuals of Model") 1

# at ;

graph(header="Conditional Volatility of Model") 1

# fvar

b34sreturn$

b34srun$

b34sexec options close(28)$ b34srun$

b34sexec options close(29)$ b34srun$

b34sexec options

/;       dodos('start /w /r    rats32s rats.in /run')

         dodos('start /w /r    rats32s rats.in     ')

         dounix('rats    rats.in rats.out')$ B34SRUN$

b34sexec options npageout

    writeout('Output from Rats',' ',' ')

    copyfout('rats.out')

    dodos('erase rats.in','erase rats.out','erase rats.dat') 
    dounix('rm rats.in','rm rats.out','rm rats.dat') $

    b34srun$

Stokes (1997) and Stokes-Neuburger (1998) provide a number of examples of b34s/rats jobs for ARCH and GARCH modeling. Be sure to call rats32s not rats386. Rats also has a garch command. Documentation for this command is on line and can be obtained on the windows rats by going to HELP and searching for GARCH. It has been my experience that this command often fails. The advantage of the old Rats approach is that you are 100% sure of what you are estimating.
An alternative to the RATS setup is the B34S matrix command GARCHEST. Examples of this command are given in Stokes (200x) which also shows a number of other ways to proceed. A sample setup is given next:

/; Example from Enders

b34sexec options ginclude('b34sdata.mac') member(wpi); b34srun;

b34sexec matrix ;

call loaddata;

dpi=dif(pi);

call print(dpi);

call garchest(res,arch,dpi,func,1,n

              :nma  1

              :ngar 1 :ngma 1

              :noconst1

              :maxfun 2000

              :maxg   2000

              :maxit  800

              :print);

call print(sumsq(goodrow(res)));

call tabulate(res,arch);

res=goodrow(res);

arch=goodrow(arch);

call graph(res  :heading 'Residual');

call graph(arch :heading 'Second Moment'); 

b34srun;

Example from dow is listed below. Remember that this is a very hard series to model and most models of the 1 pass method will blow up! This is a test dataset to introduce you to many problems of estimation of GARCH Models.
/; Example from Enders

b34sexec options ginclude('b34sdata.mac') member(dow); b34srun;

b34sexec matrix ;

call loaddata;

call load(data_acf);

call load(do_spec);

djones=dif(djones);

call garchest(res,arch,djones,func,2,n

              :nma  1

     /;       :nar 1

     /;       :ngar 1

              :ngma 1

     /;       :noconst1

              :maxfun 8000

              :maxg   8000

              :maxit  2000

              :print);

call print(sumsq(goodrow(res)));

call tabulate(res,arch);

res=goodrow(res);

arch=goodrow(arch);

call graph(res  :heading 'Residual');

call graph(arch :heading 'Second Moment');

/; Looking at ACF

%res1=res;

%res2=arch;

call character(cc,'ACF & PACF of First Moment 1 pass residual');

call data_acf(%res1,cc,60);

weights=array(:1 2 3 2 1);

call character(cc,'Spectral Analysis First Moment 1 pass residual');

call do_spec(%res1,cc,weights);

call character(cc,'ACF & PACF of Second Moment 1 pass residual');

call data_acf(%res2,cc,60);

weights=array(:1 2 3 2 1);

call character(cc,'Spectral Analysis Second Moment 1 pass residual');

call do_spec(%res2,cc,weights);

b34srun;

/; Two pass method - Using autobj

b34sexec options ginclude('b34sdata.mac') member(dow);

b34srun;

b34sexec matrix;

call loaddata;

call load(data_acf);

call load(do_spec);

call echooff;

series = djones;

call autobj(series

    :autobuild

    :print

    :nac  24

    :npac 24

/$  :seasonal 12

/;  forcing differencing

    :rdif

/$  :sdif

/$  :smodeln 'moment1.mod'

/$  :forecast 25 200

    );

    %res1 =%res;

    %ressq=%res*%res;

call autobj(%ressq

    :autobuild

    :print

    :nac  24

    :npac 24

/$  :smodeln 'moment2.mod'

/$  :seasonal 12

/$  :forecast 25 200

    );

%res2 =%res;

call graph(%res1 :heading 'Residual from autobj');

call graph(%res2 :heading 'Second Moment from autobj');

acf1=acf(%res1,24);

acf2=acf(%res2,24);

call tabulate(acf1,acf2);

/; Looking at ACF

call character(cc,'ACF & PACF of First Moment 2 pass residual');

call data_acf(%res1,cc,60);

weights=array(:1 2 3 2 1);

call character(cc,'Spectral Analysis First Moment 2 pass residual');

call do_spec(%res1,cc,weights);

call character(cc,'ACF & PACF of Second Moment 2 pass residual');

call data_acf(%res2,cc,60);

weights=array(:1 2 3 2 1);

call character(cc,'Spectral Analysis Second Momentent 2 pass residual');

call do_spec(%res2,cc,weights);

b34srun;
If you use GARCHEST it is suggested that you printout the complete help file and modify the above script as necessary.
The B34S MENU autogarch allows automatic estimation of 2 pass GARCH models and might be used first before joint estimation is attempted.

Note:  Estimation of GARCH models is very complex and may require attention to obtaining appropriate starting values.  Do not be discouraged if you encounter problems.
In your write up be sure and outline the problems you had and how you over came them.
Problem set # 6 - VAR Models using real data. Cointegration Analysis

Assignment   - Be sure to read Stokes (1997) Chapter 8 and
Enders (2004) Chapter 5-6. 
For an example look at Stokes – Neuburger (1998) chapter 4. Optionally look at Hamilton Chapter 10-11. 

Questions.

1. Define carefully what is meant by a VAR model. How is such a model used? How can it be estimated?  What are its advantages and disadvantages?  How do we tell the maximum order?
File MINK in dsn b34sdata.mac will load data on mink and muskrats trapped in Hudson bay between 1842 - 1890 into B34S. Four variables are built. MINK, MUSKRAT, LMINK and LMUSKRAT where LMINK = LOG(MINK) and LMUSKRAT = LOG(MUSKRAT). 
Variable      # Cases       Mean           Std Deviation       Variance          Maximum           Minimum

 YEAR      1        49   1866.000000       14.28869017       204.1666667       1890.000000       1842.000000

 MINK      2        49   50461.71429       20589.99702       423947977.1       110610.0000       17780.00000

 MUSKRAT   3        49   451776.2245       225444.4276      0.5082518996E+11   1082999.000       179075.0000

 LMINK     4        49   10.74528449      0.4216144196      0.1777587188       11.61376578       9.785829509

 LMUSKRAT  5        49   12.91311829      0.4613179657      0.2128142655       13.89524460       12.09555999

 CONSTANT  6        49   1.000000000       0.000000000       0.000000000       1.000000000       1.000000000

 Number of observations in data file   49

 Current missing variable code         1.000000000000000E+31

 Data begins on (D:M:Y)  1: 1:1842  ends  1: 1:1890.   Frequency is      1

Using B34S estimate a VAR model for MINK and MUSKRAT and for LMINK and LMUSKRAT.         Use no differencing.  Summarize what you find in terms of the dynamic relationship between the            series.  Estimate and use the GRANGER command to test for Granger causality and use the  

NUMIRF=12 command to calculate the IRF. Start off with P=12. Next lower P to say 3. What

happens to the Granger test? Why? Discuss the Hinich test for nonlinearity. Estimate this test and 

report and interpret the results. 

Software hint.  


The following setup will do part of the problem. 

b34sexec options ginclude('b34sdata.mac') macro(mink)$

      b34srun$

b34sexec btiden$

  title('var model on mink and muskrat')$

  seriesn var=mink name('mink')$

  seriesn var=muskrat name('muskrat')$

  estvar p=12 ilarf output=normal numirf=12$

   bispec iauto iturno$ b34seend$

2. File LYDIAPNM in dsn b34sdata.mac  will load the Lydia Pinkham data on sales and advertising (SALES ADVERTIS) from 1954M1 to 1960M6 into B34S. 
Variable      # Cases       Mean           Std Deviation       Variance          Maximum           Minimum                          

 SALES     1        78   1278.692308       196.6126330       38656.52747       1728.000000       772.0000000                         

 ADVERTIS  2        78   619.3974359       433.9763696       188335.4893       1388.000000       39.00000000                         

 CONSTANT  3        78   1.000000000       0.000000000       0.000000000       1.000000000       1.000000000                         

 Number of observations in data file   78                                                                                            

 Current missing variable code         1.000000000000000E+31                                                                         

 Data begins on (D:M:Y)  1: 1:1954  ends  1: 6:1960.   Frequency is     12                                                           

This data set has been studied to test whether there is an effect of advertising on sales. Bhattacharyya writing in the Journal of Time Series Vol. 3 No. 2 pp. 81 - 102 ("Lydia Pinkham Data remodeled") argues that "There is no effective bivariate feedback relationship between Lydia Pinkham monthly dollar sales and advertising." Use a VAR model with a maximum lag of 10 for differenced and undifferenced data to test for a bivariate relationship between SALES and ADVERTIS. Use the GRANGER command. Defend your answer.

3. Read Stokes (200x book3 chapter 6 closely. Carefully define cointegration. Discuss how this concept is useful in terms of developing multiple input vector models. Give concise definitions of:



Equilibrium error



Cointegrating vector



Cointegrating rank 



Error correction model



Conditions for vectors to be cointegrated of order d, b CI(d,b)
Illustrate with equations. Be explicit.
Problem set # 7 - Spectral Analysis and the relationship between time domain analysis and frequency domain analysis.

Assignment  -     Be sure you understand material in Stokes (1997) chapter 15 and, if you need 

                            more detail, Hamilton (1994)  chapter 6.

Questions.

1. Define and, where appropriate, show the relationship between the

   following terms:


- Spectrum

- Periodogram


- Cross periodogram


- Amplitude


- Coherency squared

 
- Phase spectram

    
- Window

            - Cosine transform


- Sine transform

2. Using the GAS data  found in member GAS in b34sdata.mac  estimate and list:


- the periodogram of X and Y


- the spectrum of X and Y


- the cospectral density estimate of X and Y


- the quadrature-spectral estimate of X and Y


- the amplitude of X and Y


- the coherency squared of X and Y


- the phase spectrum of X and Y

use weighting function

WEIGHT(1 2 3 4 3 2 1)$

Discuss what you have found.  The B34S MENU command in the display manager has already "hard wired" this command. 

3. RATS has a command @SPECFORE documented in the RATS manual.  This will provide “automatic” forecasting. You are asked to run the below listed code on sales and advertis data in File LYDIAPNM in dsn b34sdata.mac. Minor changes must be made in the SOURCE statement for 
unix. The command would be:



source(noecho) /usr/local/src/rats/examples/specfore.src

In place of the source command in the file.
b34sexec options ginclude('b34sdata.mac') macro(LYDIAPNM)$

      b34srun$

/$ user places rats commands between

/$             pgmcards$

/$             note: user rats commands here

/$             b34sreturn$

/$

b34sexec options open('rats.dat') unit(28) disp=unknown$ b34srun$

b34sexec options open('rats.in') unit(29) disp=unknown$ b34srun$

b34sexec options clean(28)$ b34srun$

b34sexec options clean(29)$ b34srun$

b34sexec pgmcall iend=70$

  rats  passasts

pcomments('*  ',

          '* data passed from b34s(r) system to rats',

          '*  ') $

pgmcards$

*

* see section 7.5 in rats manual

*

* The RATS path needs to be here!!!!!

source(noecho) d:\r\specfore.src

set      series = advertis

compute istart   = 60

compute iend     = 90

@specfore(diffs=0,sdiffs=0,trans=none,constant) series istart iend fore

set error = series - fore

print istart iend series fore error

set      series = sales

compute istart   = 60

compute iend     = 90

@specfore(diffs=0,sdiffs=0,trans=none,constant) series istart iend fore

set error = series - fore

print istart iend series fore error

b34sreturn$

b34srun $

b34sexec options close(28)$ b34srun$

b34sexec options close(29)$ b34srun$

b34sexec options dodos( 'start /w /r rats32s rats.in /run ')

                 dounix('            rats    rats.in rats.out')$

                 b34srun$

b34sexec options npageout

    writeout('output from rats',' ',' ')

    copyfout('rats.out')

    dodos('erase rats.in','erase rats.out','erase rats.dat')

    dounix('  rm rats.in','   rm rats.out','   rm rats.dat') $

    b34srun$

See how well the RATS "automatic" spectral approach works in sample and out of sample. The sample code was modified from the RATSPGM.MAC file SPECFORE member.  It can be typed in directly OR loaded in the program buffer from the display manager. Be sure and load the Pinkham Data before you attempt to run this job. You might graph the results of your analysis to highlight what you have found.
1
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